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Monte Carlo simulation of the shapes of domains in phospholipid monolayers

M. A. Mayer and T. K. Vanderlick*
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6393

~Received 4 June 1996!

The dispersed domains which result from phase separation in phospholipid monolayers have long been
known to exhibit complex and intriguing geometries. Over the last decade, much work has gone into the
theoretical prediction of these shapes using energy minimization calculations. While such studies have pro-
vided much insight into the behavior of domain shapes, they ignore the effect of entropy and thus are truly
applicable only as the temperature approaches absolute zero. In this paper, we present a Monte Carlo approach
for the prediction of domain shapes through simulation, thereby introducing temperature as an explicit param-
eter. Where applicable, results from this simulation are compared to prior shape calculations and to experi-
mental results. We find that the first order transition predicted between circular and bilobed domains applies
only at low temperature. Moreover, we find that bilobed domains should only be found when the domain
elongation occurs slowly; rapid elongation produces multiple branched domains. Finally, we find that the width
of these branches in elongated domains is independent of both the number of branches and the size of the
domain.@S1063-651X~97!01701-7#

PACS number~s!: 02.70.2c, 68.10.2m
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I. INTRODUCTION

It has been known for some time that insoluble phosp
lipid monolayers at the air-water interface exhibit intriguin
geometries during phase transitions@1–3#. One of the more
outstanding features of these geometries is the shapes
by individual domains of the higher density phase. Wh
many of the observed domain shapes clearly result fr
growth kinetics@4#, these same domains typically evolve in
a final shape characteristic of the particular lipid or lip
mixture being examined. Moreover, stable domain sha
appear to be a reproducible function of the state of the mo
layer @1# and domain size. It should be noted that at le
three other systems exhibit domain morphologies simila
phospholipid monolayers: ferromagnetic fluids confin
between parallel plates@5–7#, thin magnetic films@8#, and
superconducting films@9,10#. Presumably, this similarity
arises from the fact that each of these systems is comp
of a field of parallel oriented dipoles, either electrostatic
magnetostatic.

In recent years, much work has been undertaken in
prediction of stable domain shapes and the transitions
tween stable shapes as governed by the competition betw
dipolar repulsion and interfacial tension. The majority
these studies can be categorized into three basic st
gies: ~1! direct comparison of the energies of predet
mined shapes~or shape classes! @11–14#, ~2! analysis of the
stability of predetermined shapes@15,16#, and ~3! dynamic
evolution of shape as driven by the energy gradient@5,17#.
The first two methods, however, are only capable of pred
ing shapes explicitly examined. The third method, while
pable of truly predicting essentially any possible dom
shape, is by no means the most efficient means of doing

Recently, we brought a fourth method to the prediction
domain shapes: a numerical solution of the differen

*Author to whom correspondence should be addressed.
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equation formed by setting the first functional derivative
energy~with respect to shape! equal to zero@18,19#. Through
the remainder of this paper, we shall refer to this method
the direct, or numerical, calculation. Three key results ca
from this study. First, only two classes of domain shapes
stable. When the ratio~G! of dipolar repulsion to interfacia
tension is small, circles are the only stable domain sha
When this ratio is large, the only stable domain shapes
bilobes—the domain is elongated in a single direction, u
ally with slightly swollen ends. Second, both circles and
lobes are stable for a measurable~albeit small! range ofG.
Because of this, the transition from circles to bilobes is d
continuous. Third, as bilobed domains become increasin
elongated, the energy profile flattens; i.e., the second fu
tional derivative with respect to shape decays rapidly to z
in the neighborhood of energy minimizing shapes. This li
its the range of applicability of the numerical solution. As t
numerical roundoff error overshadows the true value of
second derivative, this method becomes nonconvergent.

In this paper, we expand upon our previous work by
troducing a metropolis Monte Carlo simulation for the pr
diction of domain shapes. None of the four shape predict
methods listed above examines the effect of entropy on
main shape; thus their results truly apply only in the limit
temperature approaches absolute zero. Metropolis Mo
Carlo, on the other hand, explicitly incorporates temperat
as a simulation parameter. The effect of temperature—
thus entropy—on domain shape can therefore be exami
Furthermore, the flat energy profile which comes with
creased elongation does not limit the ability to execute
simulation. It simply allows for larger shape fluctuations. W
should note that this is not the first study to use Metropo
Monte Carlo to simulate domain shape. Hurley and Sin
@20,21# used simulation to examine the so-called ‘‘bubble
stripe transition’’ using a hexagonal Ising lattice. That pa
ticular study, however, focused primarily on the size a
spatial arrangement of domains rather than the deta
shapes of individual domains.
1106 © 1997 The American Physical Society
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55 1107MONTE CARLO SIMULATION OF THE SHAPES OF . . .
Section II presents the details of our simulation meth
Specifically, it examines the energy functional~or Hamil-
tonian!, the computational evaluation of the Hamiltonian, t
computational~i.e., discretized! representation of domain
shape, our algorithm to generate Monte Carlo steps, and
metrics used to report shape. Section III uses this simula
technique to explore how the key physical parameters ef
domain shape. In addition, by examining how simulati
procedure affects domain shape, some conclusions are d
as to how the experimental procedure may affect dom
shape in the physical system.

II. METHOD

The three key components of any Metropolis Monte Ca
simulation are the Hamiltonian, the computational repres
tation of the physical system, and the algorithm used to g
erate the random changes. This section details how we a
these components in our simulation and presents the s
metrics we use to report domain shape.

A. Hamiltonian

Following the analysis of Keller, Korb, and McConne
@11#, two shape dependent contributions to the energy o
isolated dipolar domain are identified. The first, line tensi
scales with the perimeter of the domain, the length of
interface between the low and high density phases. This c
tribution attempts to minimize perimeter, thus promoti
compact domains. The second, dipolar repulsion, scales
the sum of the cube of reciprocal distance between the i
vidual pairs of dipoles which comprise the domain; the
poles are assumed perpendicular to the plane of the sys
This contribution attempts to increase the distance betw
dipoles, thus promoting elongated domains. Combined, th
two opposing contributions produce the Hamiltonian

H5lP1
m2

2 E E
D
d2rE E

D

h~ ur2r 8u2d!

ur2r 8u3
d2r 8. ~2.1!

Herel, P, andm represent, respectively, the line tension, t
domain perimeter, and the excess dipole density of the
main relative to the surrounding phase. The integration li
D in the electrostatic integral represents all points in
domain—covering an areaA. The functionh(x), the Heavi-
side function, is defined to equal one ifx is positive and zero
otherwise. Mathematically, its presence in Eq.~2.1! prevents
the inclusion of a nonintegrable singularity. Physically,
represents the pair distribution of dipoles in its simpl
form: individual dipoles do not overlap and their distrib
tion becomes uncorrelated for large separation. The par
eterd is on the scale of the nearest neighbor dipole sep
tion.

To generalize the simulation results, it is useful to rewr
the Hamiltonian in dimensionless form. Scaling all lengt
by d, all areas byd2, and all energies bykT yields

Ĥ5
P̂

Q
1

G

2Q E E
D̂
d2rE E

D̂

h~ ur2r 8u21!

ur2r 8u3
d2r 8, ~2.2!

whereĤ5H/kT, P̂5P/d, Q5kT/ld, andG5m2/l. The in-
tegration limit D̂ represents all points in the domain—
.
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covering a dimensionless areaÂ~5Â/d2!. For typographic
simplicity, the hats will henceforth be dropped, but all refe
ences toH, P, andA should be assumed dimensionles
From Eq.~2.2!, it is clear that the Hamiltonian is a functio
of three parameters: the ratio of electrostatic to interfac
contributions ~G!, the dimensionless temperature~Q!, and
domain area~A!.

As is common with Monte Carlo simulations, the comp
tational bottleneck lies in the evaluation of the Hamiltonia
for our particular simulation it lies in the electrostatic int
gral. Any amount of analytic evaluation of the energy fun
tional which can be performed reduces the required degre
numerical integration and thus is highly desirable. Throu
two judiciously selected coordinate transformations
outlined in Appendix A—the electrostatic term of Eq.~2.2!
can be reduced from a double area integral~four dimensions!
to a double contour integral~two dimensions!. Specifically

H5
P

Q
1

pAG

Q
2

G

2Q R ds R C~s,s8!

r~s,s8!
~er3es!

•~es83er!ds8, ~2.3!

where

C~s,s8!5 H11 ln r~s,s8!

r~s,s8!

if r~s,s8!.1
if r~s,s8!<1. ~2.4!

The integration variabless and s8 represent the arclengt
along the perimeter of the domain from an arbitrary point
the perimeter, the unit vectorses and es8 represent the tan
gents to the domain perimeter at pointss ands8, the function
r(s,s8) represents the length of the line segment connec
point s to points8, and the unit vectorer points in the direc-
tion from s to s8.

B. Simulation method

The selection of the computational representation of
main shapes was driven by two criteria: flexibility and e
ficiency. With the goal of simulating the shape of a doma
the representation should be capable of portraying a w
spectrum of shapes with minimal restrictions. Furthermore
should lend itself to computational efficiency, both in th
evaluation of the Hamiltonian and in the generation of t
random moves~perturbations!. The literature is rich with ex-
amples of two dimensional shape simulations, mostly in
context of vesicles@22–29# and cyclic chains@30–32#. Al-
though the contributions to the Hamiltonians governing th
simulations—pressure differences between interior and e
rior @23–28#, chain rigidity @23–29#, composition along the
perimeter @27#, and external potential fields@28–30#—are
fundamentally different than those for the dipolar doma
these simulations do serve as templates for our simulatio

Borrowing from those simulations@24,25,28,30,31# which
use a ‘‘pearl necklace’’ approach, we similarly represent
domain shape with anN-sided simple closed polygon. Th
number of sides may vary between simulations, but rema
constant within any given simulation. The vertices of t
polygon are not restricted to any grid or lattice. They may
located anywhere in the plane provided that the polygon d
not intersect itself and that its area remainsA. Admittedly,
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1108 55M. A. MAYER AND T. K. VANDERLICK
this polygon representation is not the most sophistica
shape model available to us. The Fourier expansion, for
ample, described by Ostrowsky and Peyraud@23# to generate
a simple closed curve, for example, has been used in m
vesicle simulations@26,27,29#. But with additional sophisti-
cation comes additional complexity. Polygons are quite
pable of capturing all but the finest detail of domain sha
while maintaining computational simplicity.

The polygon representation of domain shape brings w
it two highly attractive computational advantages. First,
simplicity immediately leads to less computational overhe
Generation of Monte Carlo moves requires no more than
selection of a set of vertices to move and a set of new p
tions to which to move them. Compared to the iterative c
sure@23# required for each perturbation of the Fourier expa
sion of domain shape, the CPU time required to gene
these moves is inconsequential. The second computati
advantage, while not instantly obvious, is more significa
By considering the polygon as a collection of line segmen
the Hamiltonian can be completely integrat
analytically—as detailed in Appendix B. It is improbab
that this is true for more sophisticated shape representat
The computational time necessary to numerically integr
the energy functional~given current resources! would cer-
tainly render this simulation either expensive or unfeasib
even with the analytic reduction of Eq.~2.2!.

The algorithm used to generate Monte Carlo moves
our simulation must satisfy the condition that the area of
domain remains constant. This is fundamentally differ
from the ‘‘pearl necklace’’ representation used in the sim
lations cited above. In those simulations, the perimeter of
vesicle was held constant while area fluctuated. A new m
generation algorithm is necessary. While many area pres
ing algorithms can easily be devised, they do not all sat
the necessary condition of microscopic reversibility. O
method, which follows, satisfies both the area preserva
and microscopic reversibility condition. Two vertices a
chosen with even probability from all vertices of the pol
gon. Because both vertices are chosen from the set o
vertices, they may be separated by one or more vertices,
may be neighboring vertices, or they may be the same
tex. If they are separated by one or more vertices, the
vertex is displaced with even probability to a new positi
within radiusRm about its old position and the second vert
is displaced perpendicular to the line segment connecting
two neighboring vertices so as to restore the domain area
Fig. 1~a!. If the two vertices are neighbors, the first vertex
again displaced with even probability to a new positi
within radiusRm but the second vertex is displaced perpe
dicular to the line segment connecting the two vertices wh
neighbor the pair of randomly selected vertices; see F
1~b!. If the two vertices are in fact the same vertex, th
vertex is displaced parallel to the line segment connecting
neighbors by a distancer chosen with probabilityP(r )
5@ARm

2 2r 2/(p/2)Rm
2 #; see Fig. 1~c!. Note that this is fully

equivalent to displacing the vertex within a circle of radi
Rm followed by a displacement perpendicular to the line s
ment connecting its neighbors so as to preserve area. If
move causes the polygon to intersect itself, that move
immediately rejected.
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Because this move generation algorithm can~and will!
result in a polygon with a large distribution of edge length
it is useful to include an additional term in the Hamiltonia
which penalizes a large standard deviation in edge lengt

Hs5x(
i

N

~pi2^p&!2. ~2.5!

Herepi represents the length of edgei and^p& represents the
average edge length. The value ofx should be chosen suc
thatHs contributes only a very small fraction of the overa
value of the Hamiltonian. For the simulation results repor
in this paper,x50.01, for which the maximum contribution
of Hs to the overall Hamiltonian was found to be less th
0.01%. Note that this contribution does not penalize la
domain perimeter, and therefore should not penalize ei
elongation or branching of the domain.

C. Shape metrics

Because of the inherently graphical nature of the pred
tion of domain shapes, defining useful metrics to report
sults is essential. For the results which appear in this pa
domain shape is reported by perimeter and number
branches. In addition—because shape cannot be fully
scribed by any finite set of scalars—representative snapsh
i.e., single Monte Carlo steps, of domain shape are provi
to aid in the discussion of selected simulations@33#.

The definition and interpretation of domain perimeter
entirely straightforward. It is computed by adding togeth
the lengths of all of the edges of the polygon. Perimete
minimized for circular domains—or in this case by regu
N-gons. A small perimeter therefore indicates a compact
main shape. A large perimeter indicates either a long ski
domain or a domain which is highly branched—or forked
where each of the branches is thin on the scale of the ove

FIG. 1. Generation of Monte Carlo moves. Two vertices a
selected at random. The first~1! is moved randomly to a new posi
tion ~18! within radiusRm of its original position. The second~2! is
moved deterministically to a new position~28! so as to maintain
domain area and microscopic reversibility. Three possible scena
exist: ~a! the two vertices are separated by one or more vertic
~b! the two vertices are neighbors, or~c! the two vertices are actu
ally the same vertex.
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55 1109MONTE CARLO SIMULATION OF THE SHAPES OF . . .
domain shape. For domains with large perimeter, the w
of the domain~or its branches! will be significantly smaller
than the length~or lengths!. The perimeter metric can there
fore also serve as a surrogate measure of domain width
proximately 2A/P. We shall henceforth use the term ‘‘elon
gated’’ to refer to any large perimeter domain. In the case
highly branched domains, this elongation might be fou
only within individual branches; the overall domain shap
the ensemble of all branches, may appear roughly circula
in Fig. 2.

The definition and interpretation of the number
branches, on the other hand, is not so straightforward.
the results reported in this paper, the number of branche
determined using techniques borrowed from computatio
image analysis@34–36#. The domain is mapped onto a pix
grid; all pixels interior to the polygon are set to 1 and
pixels exterior to the polygon are set to 0. The result
binarized image is skeletonized and the number of branc
defined as the number of limbs in the skeleton—see App
dix C. This method of assigning a scalar to describe
character of a shape works both for compact and elong
domains. Its interpretation, however, differs slightly betwe
these two cases. A compact domain exhibiting th
branches, for example, appears roughly triangular while
elongated domain appears as three distinct branches jo
by a triple point.

We must note at this point that the number of branc
metric as reported in this paper should only be interpre
qualitatively. Quantitative interpretation is thwarted by
combination of finite size effect and current computatio
limitations. Increasing the number of edges in the polyg
used to represent domain shape while holding all else c
stant, results in an increasing number of branches predi
by the simulation. For the values ofN that we examined
~N5100, 200, 500, 1000, and 2000!, no indication of an
approach to an asymptotic value was seen. IncreasinN
much above 2000 becomes computationally prohibitive
the time required for a simulation scales roughly asN2.

As will be demonstrated in Sec. III, the qualitative info
mation provided by the number of branches metric furnis
a useful complement to the perimeter metric in understa
ing the nature of domain shape transitions. Perimeter a
can only describe the elongation, and thus width, of a
main. It cannot describe the fundamental visual characte
the shape. The number of branches metric helps to fill
void. Although, the exact magnitude of the number

FIG. 2. Two elongated domains. Although the overall shape
the domain on the right appears roughly circular, it is compose
branches which individually are elongated.
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branches cannot be extracted from the results which foll
the observed trends in the number of branches show no
dication of being finite size limited. The same trends we
observed in all plots of a given simulation differing only
N. Moreover, by scaling only the number of branches ax
the plotted results from any set of simulations which diff
only in N can be made to coincide.

III. RESULTS AND DISCUSSION

The results which follow are grouped into five simulatio
experiments. The first three examine how domain shap
affected by the three simulation parameters:G, U, andA.
The next two examine how domain shape is affected
simulation procedure and from this extrapolate how dom
shape may be affected by experimental procedure in a ph
cal system. Specifically, they examine the effects of hys
esis and elongation rate. Finally, a short analysis about
prediction of domain shapes based on the results from th
simulation experiments is presented.

Unless otherwise stated, all of the simulations repor
below follow the same basic template. Domain area
1002p. Domain shape is represented by a centagon~N5100!.
The shape used to seed each simulation is defined by un
set of vertices (xi ,yi) generated by the trigonometric expa
sion,

xi
a

5cos~u i !1(
j51

5

Ax, j cos~ ju i !1Bx, j sin~ ju i !

yi
a

5sin~u i !1(
j51

5

Ay, j cos~ ju i !1By, j sin~ ju i !, ~3.1!

where the angleu i5(2p i /N), the coefficients~Ax, j , Ay, j ,
Bx, j , andBy, j ! are randomly assigned values between20.2
and 0.2, and the scaling factora is chosen so that area equa
A. Each simulation is run for 2000N successful Monte Carlo
steps before any shape statistics are collected. Statistic
perimeter and number of branches are then collected unti
simulation completes another 20 000N successful steps. Th
ratio of accepted to attempted moves is held between 4
and 60% by doubling or halving the move radiusRm , as
necessary, after every 500 accepted moves.

A. Experiments 1–3: Variation of G, U, and A

The first parameter examined isG, the dimensionless ratio
of electrostatic repulsion to interfacial tension. Figure 3 pl
the mean domain shape—measured by perimeter and nu
of branches—as a function ofG for U50.01. Inlaid shapes
depict representative domain shapes from individual Mo
Carlo steps. A clear transition in domain shape occurs in
neighborhood ofG50.21. Below this point, domains ar
fairly compact and the average number of branches is es
tially zero. Above the transition, domains become incre
ingly elongated and exhibit a growing number of branches
G increases. The error bars shown in Fig. 3 represent
fluctuations—specifically the standard deviation—in the p
rimeter and number of branches, not an uncertainty in m
surement. Interestingly, the fluctuations in perimeter
greatest in the neighborhood of the transition while fluctu

f
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1110 55M. A. MAYER AND T. K. VANDERLICK
tions in the number of branches grows withG. Finally, it is
important to note that very little scatter is seen in the peri
eter data, while the scatter in the number of branches is q
large—much larger than the fluctuations. This will be di
cussed further as more results are presented.

Figure 3 also demonstrates that the simulation agr
quite well with the direct calculation of energy minimizin
shapes@18#. They agree on the value ofG for which the
transition from circular to elongated~i.e., large perimeter!
domains occurs; the calculation predicts a transitionG of
0.214. Although the direct calculation plot had to be tru
cated atG50.221 because of nonconvergence, both peri
eter plots appear to follow the same curve above the elon
tion transition. The direct calculation predicted that th
transition from circular to elongated domains is discontin
ous, i.e., first order. Although too few simulation data poin
are shown to determine if the transition is discontinuous
continuous, the large fluctuation~in perimeter! for the simu-
lation atG50.225 strongly suggests that the domain may
oscillating between two, or more, distinct energy minimizin

FIG. 3. Domain perimeter as a function ofG. Each data point
~L! represents the mean domain perimeter for an individual sim
lation. Error bars indicate standard deviation~fluctuation! of perim-
eter. All simulations were run atQ50.01 with A51002p and
N5100. Solid lines represents the perimeter of domain shapes
culated@18# to minimize the energy functional Eq.~2.1!. The dotted
line represents the perimeter of a circular domain. Inset figu
show sample simulation steps.
-
ite
-

es

-
-
a-

-
s
r

e

shapes. One obvious difference, however, exists between
simulation and the direct calculation results: the predic
number of branches. While calculation predicts only bilob
and circular domains, the simulation finds that domains
come increasingly branched asG increases. The reason fo
this will be explained as further simulation results are co
ered.

The simulation results shown in Fig. 3 agree not only w
our prior work, they follow a basic trend which has be
observed repeatedly from the very start of domain shape
culations@12,20,37#. The characteristic length scale at whic
circular domains give way to more elongated shapes sc
exponentially with the ratio of line tension to dipole streng
~i.e., exp~1/G!!. We have chosen to show the transition fro
circular to elongated domains as a function ofG for a fixed
domain area rather than the transition as a function of a
for a fixedG. In this context, the appropriate length scale
examine is the width of the domain~or domain branches!.
Figure 4 clearly shows that once the domain is no lon
circular, its width ~as approximated by the ratio of area
perimeter! scales exponentially with 1/G.

The second parameter examined isQ, the dimensionless
temperature; in particular, its effect on the transition fro
compact to elongated domains. Figure 5 plots dom
shape—perimeter and number of branches—as a functio
G for variousQ. From the perimeter plot, it is immediatel
apparent that the onset of domain elongation occurs at
creasingly smallerG with increasing temperature. Moreove
while a clear transition from compact to elongated doma
can be seen in the neighborhood ofG50.21 forQ,0.1, the
elongation forQ.1 is too gradual to identify a value o
range ofG with this transition. Interestingly, fluctuations i
domain perimeter do not appear to necessarily increase
temperature; the largest fluctuations occur for lowQ near the
transition. Finally, the number of branches appears to be

-

al-

s

FIG. 4. Exponential growth of domain width with reciprocalG.
Figure 3 is replotted as mean ratio of domain area to perime
which is approximately equal to half the width of the branches
elongated domains, on a log scale as a function of 1/G. Error bars
indicate fluctuation ofA/P due to standard deviation~fluctuation!
of perimeter. The dashed line represents circular domains. The
ted line shows a fit through the data equal to 0.33 exp~1.0/G!.
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55 1111MONTE CARLO SIMULATION OF THE SHAPES OF . . .
termined primarily by temperature for smallG and primarily
by G for largeG. The fluctuation in the number of branche
increases with temperature and appears to be relatively
affected byG.

To help demonstrate the effects that temperature ha
the number of branches@33#, Fig. 6 shows sequences fro
four of the simulations represented in Fig. 5. Domains
high Q are rougher than those at lowQ; they exhibit many
more outcroppings, or jags. In addition, domains at highG
exhibit more branches than those at lowG. The skeletoniza-
tion procedure used to compute number of branches co
both the true branches—the major topographic features—
any substantial outcroppings. Thus, for lowG, when the
number of outcroppings greatly exceeds the number of
branches, the reported number of branches reflects a st
dependence onQ. For highG, as the number of true branche
increases, the reported number of branches becomes
strongly influenced byG. For both low and highG, the num-
ber of true branches remains fairly static throughout a
simulation while the outcroppings are highly dynamic. T
fluctuation in the reported number of branches therefore
influenced primarily byQ.

FIG. 5. Effect of temperature on domain shape. Mean perim
and mean number of branches are plotted forQ50.01 ~s!, Q50.1
~h!, Q51 ~L!, Q52 ~n!, andQ55 ~:!. All simulations were run
with N5100. Error bars indicate standard deviations~fluctuation
about mean!.
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Figure 7 shows the effect that temperature has on
exponential scaling of domain width. It would appear th
this well established scaling applies fully, as with the disco
tinuous transition, only at the zero temperature limit. As t
temperature increases, elongation begins at lowerG and thus
the domain width begins decreasing sooner, and does so
nonexponential manner. The data shown in the figure
however, suggest that the domain width will asymptotica
approach the exponential decay as it moves deeper into
elongation region~largerG!.

The final parameter examined isA, the dimensionless do
main area. As domain size increases, the elongation tra
er

FIG. 6. Sample sequences from four simulations. The top
sequences are from simulations run atG50.1; the bottom sequence
two at G50.4. The first and third sequences are from simulatio
run atQ50.1; the second and third atQ51. The first image in each
sequence is the shape used to seed the simulation; the rema
four from steps evenly spaced through the course of the simula

FIG. 7. Effect of temperature on the exponential growth of d
main width with reciprocalG. Figure 5 is replotted as mean ratio o
domain area to perimeter on a log scale as a function of 1/G for
Q50.01 ~s!, Q50.1 ~h!, Q51 ~L!, Q52 ~n!, andQ55 ~:!.
Error bars indicate fluctuation ofA/P due to standard deviation
~fluctuation! of perimeter. The dashed line represents circular
mains. The dotted line shows a fit through the data equa
0.33 exp~1.0/G!.
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1112 55M. A. MAYER AND T. K. VANDERLICK
tion shifts to increasingly lowerG. This completely agrees
with what has been found in numerous other studies wh
examined the effect of domain size on shape@5,6,12,14,18#.
Aside from the shift in the transition to lowerG, it is difficult
to extract any useful information about how the domain a
affects domain shape from plots of shape versusG. It is more
interesting, however, to examine how the character of
main branches is affected by domain size. Figure 8 plots
ratio of the domain area to the perimeter as a function
domain size for two values ofG and two values ofQ. Both
values ofG ~0.3 and 0.4! are chosen well above the elong
tion transition for allA shown. The ratio of area to perimete
can therefore be interpreted as a measure of the width o
branches. The width of the domain branches is clearly in
pendent~or only weakly dependent! upon domain size; it is a
function only of G and Q. Larger domains must therefor
exhibit either longer branches or more branches~or some
combination thereof! than smaller domains at the sameG and
Q.

B. Experiments 4–5: Variation of simulation procedure

As suggested by the sequences shown in Fig. 6, an
clearly visible when viewing animated sequences fr
sample simulations@33#, the number and configuration of th
true branches remain fairly static throughout a simulat
once they have been established. These aspects of do
shape are therefore highly dependent upon the initial~or
seed! shape. This, presumably, is the source of the nota
scatter in the number of branches plotted in Fig. 3. Beca
of this dependence on the initial formation of branches, e
simulation samples only a small subset of the large se
energetically accessible domain shapes. This has two im
diate implications on how the results from simulations

FIG. 8. Effect of domain area on the width of domain branch
Mean ratio of domain area to perimeter, which is approximat
equal to half the width of the branches of elongated domains
plotted as a function of equivalent domain radius (AA/p). Results
are shown for simulations run at two values ofG, 0.3 ~circles! and
0.4 ~diamonds!, and at two values ofQ, 0.1 ~open points! and 1
~filled points!. All simulations are run withN5100.
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domain shape are interpreted. The first is that care shoul
taken before treating the simulation results as thermo
namic properties. The second implication is that it should
possible to design simulation experiments which mimic c
tain aspects of physical experiments. The two simulation
periments which follow take advantage of the latter implic
tion to investigate shape hysteresis and the influence
elongation rate.

One of the key results found in the direct calculation
domain shape is that the transition from circular to bilob
domains is discontinuous. The shape should therefore ex
hysteresis when the value ofG is cycled through the transi
tion. To simulate this behavior, a string of linked simulatio
is performed. The first simulation is seeded with a rand
shape and run withG50.2. Subsequent simulations a
seeded with the final shape of the preceding simulation
run with a value ofG 0.0025 greater than in the precedin
Once the value ofG reaches 0.25, the process is reversed
G is decreased between each simulation in steps of 0.0
until it is again 0.2. Figures 9, 10, and 11 show the results
these simulations forQ50.01,Q50.1, andQ51.0, respec-
tively. At very low temperature~Q50.01!, hysteresis is
clearly observed in both perimeter and number of segme
which, except for near the ends of the loop, is either clea
0 ~roughly circular domains! or 1 ~single branched domains!.
At low temperature~Q50.1!, hysteresis is still observable
but signs of its disintegration are showing. The width is n
rower and more importantly, the number of branches
showing mixtures of compact and elongated domains~values
between 0 and 1!. At high temperature~Q51.0!, no sign of
hysteresis remains. This is, of course, consistent with
finding that the well defined transition disappears with
creasingQ. The number of branches, however, rema
roughly constant with a value of 1.5, which can be seen fr
Fig. 5 to be the number of branches for a simulation with
random seed run atG50.2 andQ51.0.

Comparison of the hysteresis results with Fig. 3 reveals
interesting discrepancy. In the low temperature hysteresis
periments, domains above the elongation transition exh
only single branches; the number of branches shows no
of increasing with increasingG. The core difference betwee
the simulations run for Fig. 3 and the simulations run
examine hysteresis is in how they are seeded. In the hys
esis experiment, the domains are stepped slowly through
elongation transition. In the generation of Fig. 3, the doma
are essentially plunged through the elongation transition
one quick step; because the seed shape is compact, it ca
associated with lowG. The rate of elongation apparently ha
a profound effect on domain shape. In a physical experim
elongation can be induced either by adjustingG or by chang-
ing domain size, which shifts the transitionG. The rate of
elongation is controlled therefore by how fastG is changed
or, more applicably, by how rapidly domains grow.

The final simulation experiment examines the effect t
the rate of elongation has on domain shape by stringing
gether simulation sets as in the hysteresis experiment.
first simulation in each set uses a random seed and is
with G50.2, well below the elongation transition. The la
simulation in each set is run withG50.4, well above the
elongation transition. Within each set, the final shape of e
simulation is used as the seed for the subsequent simula

.
y
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55 1113MONTE CARLO SIMULATION OF THE SHAPES OF . . .
and the value ofG is incremented byDG between simula-
tions. SmallDG corresponds to a slow progression throu
the transition. LargeDG corresponds to a rapid progressio
through the transition. Figure 12 shows the results forQ50.1
usingDG with values of 0.2, 0.1, 0.04, and 0.02. Figure
shows the same forQ51.0. To demonstrate the effect visu
ally, Fig. 14 shows one representative domain shape f
each simulation atQ51.0. At both high and low tempera
ture, the number of branches clearly decreases with decr
ing DG. ForDG50.02, nearly a magnitude larger than in t
hysteresis experiment, domains exhibit only a single bra
well into the elongation regime. This is especially interest
for Q51.0 since the domain shows a larger number
branches below the elongation transition. With increasingG,
one of the branches ultimately dominates and the dom
evolves into a single meandering branch.

FIG. 9. Shape hysteresis near the elongation transition. M
perimeter and number of branches are plotted for simulation
run betweenG50.2 andG50.4. Each simulation in the set~with the
exception of the first! was seeded with the final step of the previo
simulation. Data points representing increasingG are shown as open
circles; data points for decreasingG as filled circles. Five increasing
sequences and five decreasing sequences are shown; points
the same sequence are connected with tie lines. The dashed lin
P5628.3 represents the minimum possible perimeter, i.e., a circ
domain. All simulations were run atQ50.01 withN5100.
m
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C. Analysis of experiments 1–5:
Single vs multiple branched domains

The direct calculation predicts bilobed domains. T
simulation predicts either single or multiple branched d
mains depending upon the rate of elongation. Table I lists
mean value of the Hamiltonian from various simulatio
which predict a different number of branches, in particul
those shown forG50.4 in Figs. 12–14. Clearly domains wit
fewer branches represent a lower energy level than th
with many branches, but only marginally. Single branch
domains remain the most energetically favored shape, bu
driving force for a domain with multiple branches to becom
a single branch is negligibly weak. Similarly, for a sing
branch domain, the energy difference between a stra
branch~or bilobe! and one which meanders is too small
detect. Both of these results are consistent with the di
calculation results, which predict that bilobed domains mi
mize an energy functional which is effectively flat in th
neighborhood of this minimum.

The utility of any theoretical calculation or any simulatio
is in how it models the physical system. Figure 15 depicts
experimentally obtained fluorescence microscopy image
one phospholipid monolayer@38#. Although the domains of
the simulation exist in isolation and those in the microsco

n
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FIG. 10. Onset of loss of hysteresis near the elongation tra
tion. Data is plotted exactly as for Fig. 9, except that simulatio
were run atQ50.1.
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1114 55M. A. MAYER AND T. K. VANDERLICK
image have neighbors, the domains shown in the image d
onstrate many of the characteristics predicted by simulati
First and foremost, they strongly resemble the shapes fo
in the simulations. All of the branches from all of the do
mains appear to be of roughly the same width. The lar
domains tend to have more branches than smaller doma
These domains reside deeper within the elongation regi
and probably experienced a faster growth~thus elongation!
rate. Both of these factors are predicted by the simulation
increase the observed number of branches.

The domain area used in the simulations reported ab
~1002pd 2! was chosen to allow comparison of the simulatio
results to those of prior calculations. For room temperat
~300 K!, using a value ofl on the order of 10212 N @39#,
and a value ofd on the order of 10 Å~corresponding to a
molecular area on the order of 80 Å2!, the value of the di-
mensionless temperature is roughly 4. This is clearly in
high temperature regime. The domains examined in typi
phospholipid systems, however, are much larger than th
examined in these simulations. Simulation domains have
area on the order of 331026 mm2 ~radii of 1 nm!. Physical
domains have an area on the order of 2000mm2 ~radii of 25
mm!. It can be argued both heuristically and empirically th
the boundary between the low and high temperature regim

FIG. 11. Loss of hysteresis near the elongation transition. D
is plotted exactly as for Figs. 9 and 10, except that simulations w
run atQ51.
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should increase with increasing domain size. Heuristica
larger domains should require larger shape fluctuations
induce a transition. Empirically, the definition of dimensio
less temperature can be rewritten on the basis of domain
rather than on the basis of intermolecular distances~i.e.,
Q85[kT/lR] !. The simulation then predicts a low temper
ture limit of Q8,0.001 and a high temperature limit o
Q8.0.01. For domains observed in the physical system,Q8
is on the order of 0.0001, which is clearly now in the lo
temperature regime.

IV. CONCLUSIONS

Monte Carlo simulation can be a useful complement
direct calculation in the prediction of the shapes of doma
observed in dipolar films. Using the polygon representat
of domain shape presented in this paper, these simulat
can be accomplished without sacrificing either generality
computational efficiency. The perimeter metric appears to
a fairly robust measure of domain shape, showing little to
dependence on any of the simulation particulars such as

ta
re

FIG. 12. Sensitivity of domain shape to rate of elongation. Me
perimeter and number of branches are plotted for simulations
run from G50.2 to G50.4. Each simulation in the set~with the
exception of the first! was seeded with the final step of the previo
simulation. The results shown are for sets making steps inG of 0.2
~s!, 0.1 ~h!, 0.04 ~L!, and 0.02~n!. All simulations were run at
Q50.1 withN5100.
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55 1115MONTE CARLO SIMULATION OF THE SHAPES OF . . .
gree of discretization, seed shape, or even elongation
Nothing indicates that it cannot safely be interpreted a
thermodynamic property. The number of branches, on
other hand, is highly dependent upon many simulation p
ticulars. The information it brings should be regarded qu

FIG. 13. Sensitivity of domain shape to rate of elongation. D
is plotted exactly as for Fig. 12, except withQ51.

FIG. 14. Sample simulation steps from the simulation s
shown in Fig. 13. The first image in each sequence is from
simulation run atG50.2; the last from the simulation run atG50.4.
All simulations were run atQ51 with N5100.
te.
a
e
r-
i-

tatively rather than quantitatively. The qualitative inform
tion which it brings, however, provides insight into the visu
nature of domain shape transitions. In addition, this dep
dence upon the simulation parameters allows for const
tion of simulation experiments which mimic aspects
physical experiments.

Simulation can provide information about domain sha
unobtainable by calculation alone. In addition to many min
results, the simulation experiments reported herein yield f
key results. The width of domain branches is a function
only G andQ and is independent of the size of the doma
The transition from compact to elongated domains, alre
known to be discontinuous in the zero temperature limit
so only at low temperature; at high temperature, the elon
tion becomes continuous. Elongated domains may appea
ther as a single branch or with many branches depend
upon the rate of elongation. While the conformation a
roughness of individual branches may be fairly dynamic,
number of branches is reasonably static once establishe

The simulation experiments presented in this paper re
sent only a fraction of the possibilities. Immediate examp
include simulations seeded with elongated shapes rather
compact ones, experiments which treat area or tempera
rather thanG, as the principle simulation parameter, and
thorough mapping of parameter space. Other examples m

a

s
e

TABLE I. Comparison of the Hamiltonian for domain shap
with a different number of branches. The values shown are from
simulations shown in Figs. 12–14 withG50.4. SmallerDG corre-
sponds to fewer domain branches.

Q DG
Number

of branches
Average

Hamiltonian
St. dev.

Hamiltonian

0.1 0.20 21.5 22651.1 43.7
0.1 0.10 12.0 22700.3 16.0
0.1 0.04 5.0 22761.5 10.5
0.1 0.02 1.1 22778.4 3.7
1.0 0.20 30.4 22436.2 34.5
1.0 0.10 10.5 22595.6 29.0
1.0 0.04 5.7 22661.5 12.2
1.0 0.02 1.8 22699.5 8.3

FIG. 15. Fluorescence microscopy image of an insoluble mo
layer of a mixture of 50% L-a-dipalmitoyl-2-sn-glycero-
phosphocholine ~DPPC! and 50% 1-behenoyl-2-hydroxy-sn
glycero-phosphocholine at an air-water interface. Surface pres
is 13 dyne/cm. Area per lipid molecule is 58.0 Å2. Domains exhibit
shapes similar to those seen in the simulation. Scale: 1 cm'60mm.
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1116 55M. A. MAYER AND T. K. VANDERLICK
include augmentation of the Hamiltonian to examine the
fects of tilted dipoles or anisotropic line tension. Even mo
elaborate examples may require adaptation of the simula
technique such as to examine interactions between neigh
ing domains or the influence of confinement on the doma
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APPENDIX A

This appendix details the analytic reduction of the dou
area integral of the Hamiltonian to a double contour integ
Beginning with the expression for the electrostatic term
found in Eq.~2.2!, the integral overd2r 8 is expanded using
polar coordinates with the origin located atr ,

Hm

G/2U
5E E

D
d2rE

0

2pE
0

j~f;r ! h~h21!

h3 h dh df. ~A1!

Here, the coordinatesh and f represent, respectively, th
distance fromr and the polar angle. The upper limit of inte
gration overh—the functionj~f;r !—represents the distanc
from r to the domain perimeter at anglef. Althoughj may
be multivalued for somef, this does not hinder analyti
evaluation.

The Heaviside function is moved out of the innermo
integral by adjusting its argument and the lower limit
integration

Hm

G/2U
5E E

D
d2rE

0

2p

h„j~f;r !21…E
1

j~f;r ! dh

h2 df.

~A2!

The integral overh is evaluated analytically

Hm

G/2U
5E E

D
d2rE

0

2p

h„j~f;r !21…2
h„j~f;r !21…

j~f;r !
df.

~A3!

The identityh(x)512h(2x) is applied to the first term o
the integrand

Hm

G/2U
5E E

D
d2rE

0

2p

12h„12j~f;r !…

2
h„j~f;r !21…

j~f;r !
df, ~A4!

which can then be rewritten as,

Hm

G/2U
52pA2E E

D
d2rE

0

2p df

j* ~f;r !

where j* ~f;r !5max„j~f;r !,1…. ~A5!

Evaluation of the integral overd2r begins with reversal of
the order of integration in Eq.~A5!
f-
e
n
or-
s.

y

-

e
l.
s

t

Hm

G/2Q
52pA2E

0

2p

dfE E
D

d2r

j* ~r ;f!
. ~A6!

Note thatf is now the integration variable for the oute
integral and thus essentially a parameter to the inner integ
The inner integration is next expanded using a coordin
system designed specifically to allow further analytic eva
ation. The coordinates is defined as the arclength along th
perimeter of the domain from an arbitrary fixed point on t
perimeter. The unit vectorer is defined to point along the
directionp1f. The coordinatez is defined as the distanc
from points on the perimeter in the direction ofer ~see Fig.
16!. Applying this coordinate system to Eq.~A6! yields

Hm

G/2Q
52pA2E

0

2p

df R dsues3eru E
0

r~s;f! dz

j* ~r ;f!
.

~A7!

The upper limit of integration overdz—the function
r~s;f!—represents the distance from points to the perimeter
in the direction ofer . As with j~f;r !, r~s;f! may be multiply
defined for some values ofs but will pose no problem.

The rationale behind this rather unique coordinate sys
can now be utilized. The coordinatez and the function
j~r ;f!, although defined from opposite viewpoints, are ge
metrically identical. Substituting this identity into Eq.~A7!
yields

Hm

G/2U
52pA2E

0

2p

df R dsues3eru E
0

r~s;f! dz

max~z,1!
.

~A8!

The integral overdz is evaluated

Hm

G/2Q
52pA2E

0

2p

df R ues3eruC~s;f!ds, ~A9!

where,

C~s;f!5 H11 ln r~s;f!

r~s;f!

if r~s;f!.1
if r~s;f!<1. ~A10!

FIG. 16. Coordinate system used to evaluate Eq.~A7!. The co-
ordinates represents distance along domain perimeter. The coo
natez represents distance from points at anglep1f, the direction
of er . Also shown here,r~s;f! represents the value~s! of z for
which ~s,z! is a point on the perimeter of the domain.



-

ec
s
in

nt

o

s
e

e

q

for

ate
ll

sily

-

g

-
efi-

else

-

m

t
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Finally, the integration overdf is converted to contour in
tegration„(df/ds8)5@uer3es8u/r(s,s8)#…

Hm

G/2Q
52pA2R R C~s,s8!

r~s,s8!
ues3eruuer3es8uds8ds.

~A11!

APPENDIX B

This appendix details the analytic evaluation of the el
trostatic integral of the Hamiltonian for polygonal domain
For the sake of brevity, however, only evaluation of the
definite integral will be covered in detail.

Considering the polygon as the set of line segme
$s1,s2,...,sN%, the contour integral of Eq.~2.4! is rewritten as
a summation of line integrals over the edges of the polyg

I5(
i51

N

(
j51

N E
s i
E

s j

C~s,s8!

r~s,s8!
ues3eruuer3es8uds8ds.

~B1!

Each integral term in the summation of Eq.~B1! can now be
evaluated using~yet another! coordinate transformation. A
shown in Fig. 17, two~skew! axes are defined so as to b
collinear with the line segmentssi andsj and the origin is
defined as the intersection of these two axes.~Note that the
following analysis does not hold for parallelsi andsj , but a
simple analogous analysis exists.! These axes, which shall b
labeledu andv, intersect at angleu. Within this coordinate
system,r is found easily through law of cosines,

r~u,v !5uvev2ueuu5Au21v222uv cosu, ~B2!

from which the unit vectorer is simply,

er5
vev2ueu

r
. ~B3!

The unit vectorseu andev are identical toes andes8, respec-
tively. In this coordinate system the integral terms of E
~B1! can be written as

I i j52sin2uE E uvC

r3
dv du. ~B4!

FIG. 17. Coordinate axes used to evaluate each integral ter
the summation Eq.~B1!. Theu axis is defined to be collinear with
the segmentsi and thev axis collinear withsj . The axes intersec
at the origin with angleu.
-
.
-

s,

n

.

Because the definition ofC depends on whetherr is
greater than or less than unity, two regimes are defined
the evaluation of Eq.~B4!. The first regime, which shall be
referred to as regime 1, is defined to contain all coordin
pairs (u,v) for which r<1. The second regime, which sha
be referred to as regime 2, contains all (u,v) for which r.1.
The boundaries between these two regimes follows ea
from Eq. ~B2!. In particular, the limits of regime 1 are
v2(u),v,v1(u), where

v6~u!5u cosu6A12u2 sin2u. ~B5!

If u sinu.1, thenr will be greater than 1—and thus in re
gime 2—for allv.

The integralI i j is first evaluated for regime 1. Substitutin
the appropriate definition ofC, i.e., r, into Eq. ~B4! yields

I i j ,152sin2uE uE v
r2

dv du, ~B6!

which immediately evaluates to

I i j ,152sin2uE u ln r du

2sinu cosuE u sin21S v2u cosu

r Ddu. ~B7!

Here the additional subscript onI indicates that the integra
tion was evaluated in regime 1. In the evaluation of the d
nite integral, the limits on the integration overdv can origi-
nate from one of two sources: the end points ofsj or the
regime boundary. Therefore, before integrating overdu, Eq.
~B7! should be evaluated at the regime boundaries; or
the integration will apply only to constantv, or the end-
points. Substituting Eq.~B5! into I i j ,1 produces

I i j ,1
6 57sinu cosuE u cos21~u sinu!du. ~B8!

Here the superscript indicates thatI i j ,1 was evaluated at ei
ther the upper~1! or lower ~2! boundary of regime 1.

Finally, Eq. ~B7! and Eq.~B8! are integrated overdu

I i j ,15
u2 sin2u

4
2
u21v2

2
sin2u lnr

1
v22u2

2
sinu cosu sin21S v2u cosu

r D , ~B9!

and

I i j ,1
6 5

6u cosuA12u2 sin2u

4

7
2u2 sin2u21

4 sinu
cosu cos21~u sinu!. ~B10!

Repeating the above analysis, the integralI i j is next
evaluated for regime 2. The appropriateC, i.e., 11ln r, is
substituted into Eq.~B4!

in
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I i j ,252sin2uE uE v~11 lnr!

r3
dv du, ~B11!

which evaluates to

I i j ,25E ~u2v cosu!~21 lnr!

r
du

1cosuE ln~r2u cosu1v !du. ~B12!

Evaluation at the regime boundaries yields

I i j ,2
6 52 sin2uE u du72 cosuE A12u2sin2udu

1cosuE ln~12A16u2sin2u!du. ~B13!

Integrated overdu, Eq.~B12! and Eq.~B13! become, respec
tively,

I i j ,25r1r lnr1u ln~r2u cosu1v !1v ln~r2v cosu

1u!2u cosu, ~B14!

and

I i j ,2
6 5u2 sin2u7u cosuA12u2 sin2u

1u cosu ln~12A12u2 sin2u!2u cosu.

~B15!

Evaluation of the definite integral requires no more th
determiningu and the limiting values ofu and v for any
given si andsj and evaluatingI i j at these limits. For seg
ments pairs which reside wholly in a single regime, this
completely straightforward. For segment pairs which exte
into both regimes, the integral must first be separated
components which reside in only one regime. For the sak
n

s
d
to
of

computational efficiency, it is useful to examine indepe
dently all regime configurations that a pair of segments
possibly exhibit. The number of logarithmic and trigonome
ric function calls, which tend to be relatively CPU intensiv
can thereby be significantly reduced through combination
elimination of terms.

APPENDIX C

This appendix details the skeletonization process use
determine the number of branches in a domain shape. G
metrically, the medial axis, or skeleton, of a planer shape
the locus of points interior to the shape for which the mi
mum distance to the perimeter has a degeneracy of 2
greater@35#. The classic illustration is to imagine a fire l
simultaneously along the entire perimeter of the shape
allowed to burn evenly, the fronts of the fire should me
along the skeleton of the shape@34#. The number of limbs
~or branches! in such a skeleton provides one measure
describing the character of domain shape. Because the
dial axis cannot, in general, be calculated easily using tra
tional analytic geometry, the techniques of digital image p
cessing are helpful.

Before the domain shape can be skeletonized, it mus
converted to a binary pixel image. The shape is mapped o
a square grid with each element of the grid~or pixel! set to a
value of either 1 or 0 depending on whether it represents
interior or exterior of the shape. For convenience, pixels w
value 1 will be referred to as belonging to the image. Cha
ing the value of a pixel from 1 to 0 therefore will be referre
to as removing the pixel from the image. For the resu
reported in this paper, the binary image was always 400 p
els by 400 pixels.

In digital image processing, a skeleton, not necessarily
medial axis, is generated through an iteration of selec
erosions@34# of the binary image. Each successive ima
(Xi) in the iteration is generated from the preceding (Xi21)
by filtering, or removing, those pixels whose neighborho
is described by a 333 pixel mask. For skeletonization, a tot
of 16 masks are used
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The entry in the center of the mask represents the pixe
question and the eight surrounding entries represent the e
neighboring pixels. For the mask to fit the neighborhood,
entries of 1 in the mask must correspond to pixels inside
image, all entries of 0 in the mask must correspond to pix
outside the image, and all blank entries may correspon
pixels either inside or outside of the image. Only one mas
used for each iteration. They are used in the order they
pear in Eq.~C1!. After the final mask has been used, t
process repeats beginning with the first mask. Iteration c
tinues untilXi is identical toXi216.
v.
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e
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to
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Once the skeleton image (Xsk) has been created, indi
vidual limbs are identified and counted. To identify uniq
limbs, all triple points ofXsk—pixels which have at leas
three neighboring pixels in the image—are removed from
image. The resulting image will consist of some number
disconnected limbs. To count the number of branches, e
limb ~or branch! is recursively removed from the image. Be
ginning with the first pixel in the image, it and all pixel
connected to it by a continuous path are removed. This p
cess of removing limbs is repeated until no pixels remain
the image—the number of repetitions is the number
branches.
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