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Monte Carlo simulation of the shapes of domains in phospholipid monolayers
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The dispersed domains which result from phase separation in phospholipid monolayers have long been
known to exhibit complex and intriguing geometries. Over the last decade, much work has gone into the
theoretical prediction of these shapes using energy minimization calculations. While such studies have pro-
vided much insight into the behavior of domain shapes, they ignore the effect of entropy and thus are truly
applicable only as the temperature approaches absolute zero. In this paper, we present a Monte Carlo approach
for the prediction of domain shapes through simulation, thereby introducing temperature as an explicit param-
eter. Where applicable, results from this simulation are compared to prior shape calculations and to experi-
mental results. We find that the first order transition predicted between circular and bilobed domains applies
only at low temperature. Moreover, we find that bilobed domains should only be found when the domain
elongation occurs slowly; rapid elongation produces multiple branched domains. Finally, we find that the width
of these branches in elongated domains is independent of both the number of branches and the size of the
domain.[S1063-651%97)01701-1

PACS numbe(s): 02.70—-c, 68.10—m

I. INTRODUCTION equation formed by setting the first functional derivative of

It has been known for some time that insoluble phospho-energy(wIth respect to shapequal to zer¢18,19. Through

- . ; ..U “the remainder of this paper, we shall refer to this method as
lipid monolayers at the air-water interface exhibit intriguing ; ; ;

. ; " the direct, or numerical, calculation. Three key results came
geometries during phase transitigris-3]. One of the more : . .

. g from this study. First, only two classes of domain shapes are
outstanding features of these geometries is the shapes taken

o . ) ; . Stable. When the rati@") of dipolar repulsion to interfacial
by individual domains of the higher density phase. Wh”etension is small, circles are the only stable domain shape.

many Of. th? observed domain shqpes c!early result .fronQNhen this ratio is large, the only stable domain shapes are
growth kineticq 4], these same domains tYP'Ca”V, eyolve |'nt.o bilobes—the domain is elongated in a single direction, usu-
a final shape characteristic of the particular lipid or lipid o1y with slightly swollen ends. Second, both circles and bi-
mixture being examined. Moreover, stable domain shapegypes are stable for a measuraldgbeit smal) range ofT".
appear to be a reproducible function of the state of the monogecause of this, the transition from circles to bilobes is dis-
layer [1] and domain size. It should be noted that at leaskontinuous. Third, as bilobed domains become increasingly
three other systems exhibit domain morphologies similar talongated, the energy profile flattens; i.e., the second func-
phospholipid monolayers: ferromagnetic fluids confinedtional derivative with respect to shape decays rapidly to zero
between parallel platefs—7], thin magnetic filmg8], and  in the neighborhood of energy minimizing shapes. This lim-
superconducting filmg9,10]. Presumably, this similarity its the range of applicability of the numerical solution. As the
arises from the fact that each of these systems is composemdimerical roundoff error overshadows the true value of the
of a field of parallel oriented dipoles, either electrostatic orsecond derivative, this method becomes nonconvergent.
magnetostatic. In this paper, we expand upon our previous work by in-

In recent years, much work has been undertaken in th&oducing a metropolis Monte Carlo simulation for the pre-
prediction of stable domain shapes and the transitions betiction of domain shapes. None of the four shape prediction
tween stable shapes as governed by the competition betweemethods listed above examines the effect of entropy on do-
dipolar repulsion and interfacial tension. The majority of main shape; thus their results truly apply only in the limit as
these studies can be categorized into three basic strateemperature approaches absolute zero. Metropolis Monte
gies: (1) direct comparison of the energies of predeter-Carlo, on the other hand, explicitly incorporates temperature
mined shapegor shape classgfl1-14, (2) analysis of the as a simulation parameter. The effect of temperature—and
stability of predetermined shap¢$5,16, and(3) dynamic  thus entropy—on domain shape can therefore be examined.
evolution of shape as driven by the energy grad[&nt7]. Furthermore, the flat energy profile which comes with in-
The first two methods, however, are only capable of predictereased elongation does not limit the ability to execute the
ing shapes explicitly examined. The third method, while casimulation. It simply allows for larger shape fluctuations. We
pable of truly predicting essentially any possible domainshould note that this is not the first study to use Metropolis
shape, is by no means the most efficient means of doing sdonte Carlo to simulate domain shape. Hurley and Singer

Recently, we brought a fourth method to the prediction 0f{20,21] used simulation to examine the so-called “bubble to
domain shapes: a numerical solution of the differentialstripe transition” using a hexagonal Ising lattice. That par-

ticular study, however, focused primarily on the size and
spatial arrangement of domains rather than the detailed
* Author to whom correspondence should be addressed. shapes of individual domains.
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Section Il presents the details of our simulation methodcovering a dimensionless are#(=.4/5. For typographic
Specifically, it examines the energy functior@r Hamil-  simplicity, the hats will henceforth be dropped, but all refer-
tonian, the computational evaluation of the Hamiltonian, theences toH, P, and A should be assumed dimensionless.
computational(i.e., discretizefl representation of domain From Eq.(2.2), it is clear that the Hamiltonian is a function
shape, our algorithm to generate Monte Carlo steps, and thaf three parameters: the ratio of electrostatic to interfacial
metrics used to report shape. Section Ill uses this simulationontributions(I"), the dimensionless temperatu{®), and
technique to explore how the key physical parameters effealomain aredq.A).
domain shape. In addition, by examining how simulation As is common with Monte Carlo simulations, the compu-
procedure affects domain shape, some conclusions are dravational bottleneck lies in the evaluation of the Hamiltonian;
as to how the experimental procedure may affect domaiffior our particular simulation it lies in the electrostatic inte-

shape in the physical system. gral. Any amount of analytic evaluation of the energy func-
tional which can be performed reduces the required degree of
Il. METHOD numerical integration and thus is highly desirable. Through

) two judiciously selected coordinate transformations—
~ The three key components of any Metropolis Monte Carlogytlined in Appendix A—the electrostatic term of E@.2)
simulation are the Hamiltonian, the computational represencan pe reduced from a double area inte¢fi@ir dimensions

tation of the physical system, and the algorithm used to genp a double contour integrétwo dimensions Specifically
erate the random changes. This section details how we apply

these components in our simulation and presents the scalar P #AT T Y(s,s')
metrics we use to report domain shape. H=6""9 20 jg ds é (55 (e,X &)
A. Hamiltonian -(eg X e,)ds, (2.3

Following the analysis of Keller, Korb, and McConnell |, hqre
[11], two shape dependent contributions to the energy of an
isolated dipolar domain are identified. The first, line tension,
scales with the perimeter of the domain, the length of the \If(s,s’):{
interface between the low and high density phases. This con-
tribution attempts to minimize perimeter, thus promotingThe integration variables and's’ represent the arclength
compact domains. The second, dipolar repulsion, scales withiong the perimeter of the domain from an arbitrary point on
the sum of the cube of reciprocal distance between the indig,o perimeter, the unit vectors and €, represent the tan-
vidual pairs of dipoles which comprise the domain; the di-I%rents to the domain perimeter at poietands’, the function

pol_es are gssgmed perpendlc.ular to the pIar_le of the syste 's,s’) represents the length of the line segment connecting
This contribution attempts to increase the distance betwec—:slg‘o

. ) ) ; oints to points’, and the unit vectoe, points in the direc-
dipoles, thus promoting elongated domains. Combined, thesg | from :E,)to s » P
two opposing contributions produce the Hamiltonian

w? h(|r—r'|—6) B. Simulation method
porpe [ [ [ [ ML 0y _ _ _
2 D b |r—r’| The selection of the computational representation of do-

main shapes was driven by two criteria: flexibility and ef-

Here, P, andu represent, respectively, the line tension, theficiency. With the goal of simulating the shape of a domain,
domain perimeter, and the excess dipole density of the dahe representation should be capable of portraying a wide
main relative to the surrounding phase. The integration limitspectrum of shapes with minimal restrictions. Furthermore, it
D in the electrostatic integral represents all points in theshould lend itself to computational efficiency, both in the
domain—covering an ared. The functionh(x), the Heavi-  evaluation of the Hamiltonian and in the generation of the
side function, is defined to equal onexifs positive and zero random movesgperturbations The literature is rich with ex-
otherwise. Mathematically, its presence in E2}1) prevents amples of two dimensional shape simulations, mostly in the
the inclusion of a nonintegrable singularity. Physically, it context of vesicle$22—29 and cyclic chaing30-32. Al-
represents the pair distribution of dipoles in its simplestthough the contributions to the Hamiltonians governing these
form: individual dipoles do not overlap and their distribu- simulations—pressure differences between interior and exte-
tion becomes uncorrelated for large separation. The paramior [23—28, chain rigidity [23—29, composition along the
eter d is on the scale of the nearest neighbor dipole separgerimeter[27], and external potential field28—30—are
tion. fundamentally different than those for the dipolar domain,

To generalize the simulation results, it is useful to rewritethese simulations do serve as templates for our simulation.
the Hamiltonian in dimensionless form. Scaling all lengths  Borrowing from those simulatior{24,25,28,30,3llwhich

1+1In p(s,s’) if p(s,s’)>1

p(s,s") if p(s,s')<1 24

by &, all areas bys®, and all energies biT yields use a “pearl necklace” approach, we similarly represent the
- domain shape with ail-sided simple closed polygon. The

~ I ) h(fr—r'[—-1) ., number of sides may vary between simulations, but remains

H:6+ﬁf ff)d rf fb [r—r'|® dr’, (22 constant within any given simulation. The vertices of the

. ~ polygon are not restricted to any grid or lattice. They may be
whereH=H/kT, P=P/8, ®=kT/\6, and'=u?/\. The in-  located anywhere in the plane provided that the polygon does
tegration limit D represents all points in the domain— not intersect itself and that its area remaits Admittedly,
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this polygon representation is not the most sophisticated
shape model available to us. The Fourier expansion, for ex-
ample, described by Ostrowsky and Peyrf2@] to generate
a simple closed curve, for example, has been used in many
vesicle simulation$26,27,29. But with additional sophisti-
cation comes additional complexity. Polygons are quite ca-
pable of capturing all but the finest detail of domain shape
while maintaining computational simplicity.

The polygon representation of domain shape brings with
it two highly attractive computational advantages. First, its
simplicity immediately leads to less computational overhead.
Generation of Monte Carlo moves requires no more than the
selection of a set of vertices to move and a set of new posi-
tions to which to move them. Compared to the iterative clo-
sure[23] required for each perturbation of the Fourier expan-
sion of domain shape, the CPU time required to generate
these moves is inconsequential. The second computational FIG. 1. Generation of Monte Carlo moves. Two vertices are

advantage, while not instantly obvious, is more significantgejected at random. The firt) is moved randomly to a new posi-
By considering the polygon as a collection of line segmentsiion (1) within radiusR,, of its original position. The secon@) is

the Hamiltonian can be completely integrated moved deterministically to a new positiq@’) so as to maintain
analytically—as detailed in Appendix B. It is improbable domain area and microscopic reversibility. Three possible scenarios
that this is true for more sophisticated shape representationgxist: (a) the two vertices are separated by one or more vertices,
The computational time necessary to numerically integratéb) the two vertices are neighbors, @) the two vertices are actu-
the energy functionalgiven current resourcesvould cer-  ally the same vertex.

tainly render this simulation either expensive or unfeasible,

even with the analytic reduction of E(R.2). ! : oI
The algorithm used to generate Monte Carlo moves for.re.SUIt Ina polygon with a 'afg.e d|str|but|c_)n of edge I.enths,
it is useful to include an additional term in the Hamiltonian

our simulation must satisfy the condition that the area of the ; T

: . L . which penalizes a large standard deviation in edge length
domain remains constant. This is fundamentally different
from the “pearl necklace” representation used in the simu- N
lations cited above. In those simulations, the perimeter of the H‘fz)(z (pi—{(p))>. (2.9
vesicle was held constant while area fluctuated. A new move !

generation algorithm is necessary. While many area presery- .
ing algorithms can easily be devised, they do not all satisf;r_'erepi represents the length of edgand(p) represents the

the necessary condition of microscopic reversibility. ourdverage edge length. The value)phould be chosen such

g H .
method, which follows, satisfies both the area preservatioﬁhatH contributes only a very small fraction of the overall

and microscopic reversibility condition. Two vertices areyalue of the Hamiltonian. For the simulation results reported

chosen with even probability from all vertices of the poly- mf t;_}'f tgatrr)lir’gjeeflllHz)r;mglncigr:hvsarg?é:;n;gToct?gtlrézzutcr)]gn
gon. Because both vertices are chosen from the set of g,

@)

Because this move generation algorithm dand will)

vertices, they may be separated by one or more vertices, th Ol%' Not_e that this contribution does not penal!ze '?fge
may be neighboring vertices, or they may be the same ve fomain perimeter, and therefore sh(_)uld not penalize either
tex. If they are separated by one or more vertices, the ﬁrs?longatmn or branching of the domain.

vertex is displaced with even probability to a new position .

within radiusR,, about its old position and the second vertex C. Shape metrics

is displaced perpendicular to the line segment connecting its Because of the inherently graphical nature of the predic-
two neighboring vertices so as to restore the domain area; s&en of domain shapes, defining useful metrics to report re-
Fig. 1(a). If the two vertices are neighbors, the first vertex issults is essential. For the results which appear in this paper,
again displaced with even probability to a new positiondomain shape is reported by perimeter and number of
within radiusR,, but the second vertex is displaced perpen-branches. In addition—because shape cannot be fully de-
dicular to the line segment connecting the two vertices whichscribed by any finite set of scalars—representative snapshots,
neighbor the pair of randomly selected vertices; see Figi.e., single Monte Carlo steps, of domain shape are provided
1(b). If the two vertices are in fact the same vertex, thisto aid in the discussion of selected simulati¢88].

vertex is displaced parallel to the line segment connecting its The definition and interpretation of domain perimeter is
neighbors by a distance chosen with probabilityP(r)  entirely straightforward. It is computed by adding together
=[\/R2m—r2/(w/2)Rr2n]; see Fig. {c). Note that this is fully the lengths of all of the edges of the polygon. Perimeter is
equivalent to displacing the vertex within a circle of radiusminimized for circular domains—or in this case by regular
R, followed by a displacement perpendicular to the line segN-gons. A small perimeter therefore indicates a compact do-
ment connecting its neighbors so as to preserve area. If anpain shape. A large perimeter indicates either a long skinny
move causes the polygon to intersect itself, that move islomain or a domain which is highly branched—or forked—
immediately rejected. where each of the branches is thin on the scale of the overall
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branches cannot be extracted from the results which follow,
the observed trends in the number of branches show no in-
dication of being finite size limited. The same trends were
observed in all plots of a given simulation differing only in
N. Moreover, by scaling only the number of branches axes,
the plotted results from any set of simulations which differ
only in N can be made to coincide.

Ill. RESULTS AND DISCUSSION

The results which follow are grouped into five simulation
experiments. The first three examine how domain shape is
FIG. 2. Two elongated domains. Although the overall shape ofaffected by the three simulation parametdrs:©, and A.
the domain on the right appears roughly circular, it is composed offhe next two examine how domain shape is affected by
branches which individually are elongated. simulation procedure and from this extrapolate how domain

shape may be affected by experimental procedure in a physi-

domain shape. For domains with large perimeter, the widthya| system. Specifically, they examine the effects of hyster-

of the domain(or its brancheswill be significantly smaller  esjs and elongation rate. Finally, a short analysis about the

than the lengtf{or lengths. The perimeter metric can there- pregiction of domain shapes based on the results from these

fore also serve as a surrogate measure of domain width, agimylation experiments is presented.

proximately 24/P. We shall henceforth use the term “elon-  ypjess otherwise stated, all of the simulations reported

gated” to refer to any large perimeter domain. In the case ofelow follow the same basic template. Domain area is

highly branched domains, this elongation might be found; o, Domain shape is represented by a centagion100).

only within individual branches; the overall domain shape,The shape used to seed each simulation is defined by unique

itrr:eF%nSZemble of all branches, may appear roughly circular aet of verticesx; ,y;) generated by the trigonometric expan-
The definition and interpretation of the number of sion.

branches, on the other hand, is not so straightforward. For X 5

the results reported in this paper, the number of branches is —'=cos( 6;,)+ E A, j cogj6)+B,; sin(j6;)

determined using techniques borrowed from computational =1

image analysi$34—36. The domain is mapped onto a pixel

grid; all pixels interior to the polygon are set to 1 and all yi . ) .

pixels exterior to the polygon are set to 0. The resulting ;:S”‘(ai)ﬂzl Ay codj o) +By, sin(j6), (3.1

binarized image is skeletonized and the number of branches

defined as the number of limbs in the skeleton—see Appenyhere the angled, = (2i/N), the coefficients(A, ;, A, ;,

dix C. This method of assigning a scalar to describe thes . andB, ) are randomly assigned values betweed,2

character of a shape works both for compact and elongateghd 0.2, and the scaling factaris chosen so that area equals

domains. Its interpretation, however, differs slightly between 4 Each simulation is run for 2000successful Monte Carlo

these two cases. A compact domain exhibiting thre&teps before any shape statistics are collected. Statistics on

branches, for example, appears roughly triangular while aperimeter and number of branches are then collected until the

elongated domain appears as three distinct branches joingghylation completes another 20 00@uccessful steps. The

by a triple point. . ratio of accepted to attempted moves is held between 40%
We must note at this point that the number of branchegng 60% by doubling or halving the move radiBs,, as

metric as reported in this paper should only be interpreteghecessary, after every 500 accepted moves.
qualitatively. Quantitative interpretation is thwarted by a

combination of finite size effect and current computational
limitations. Increasing the number of edges in the polygon
used to represent domain shape while holding all else con- The first parameter examinedlis the dimensionless ratio
stant, results in an increasing number of branches predicteaf electrostatic repulsion to interfacial tension. Figure 3 plots
by the simulation. For the values ®f that we examined the mean domain shape—measured by perimeter and number
(N=100, 200, 500, 1000, and 2000 indication of an of branches—as a function &f for ©=0.01. Inlaid shapes
approach to an asymptotic value was seen. Increaking depict representative domain shapes from individual Monte
much above 2000 becomes computationally prohibitive a€arlo steps. A clear transition in domain shape occurs in the
the time required for a simulation scales roughlyNfs neighborhood of'=0.21. Below this point, domains are
As will be demonstrated in Sec. lll, the qualitative infor- fairly compact and the average number of branches is essen-
mation provided by the number of branches metric furnishesially zero. Above the transition, domains become increas-
a useful complement to the perimeter metric in understandingly elongated and exhibit a growing number of branches as
ing the nature of domain shape transitions. Perimeter alonE increases. The error bars shown in Fig. 3 represent the
can only describe the elongation, and thus width, of a dofluctuations—specifically the standard deviation—in the pe-
main. It cannot describe the fundamental visual character aimeter and number of branches, not an uncertainty in mea-
the shape. The number of branches metric helps to fill thisurement. Interestingly, the fluctuations in perimeter are
void. Although, the exact magnitude of the number ofgreatest in the neighborhood of the transition while fluctua-

5

A. Experiments 1-3: Variation of T', ©, and A
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FIG. 4. Exponential growth of domain width with reciprodal
g 1 Figure 3 is replotted as mean ratio of domain area to perimeter,
which is approximately equal to half the width of the branches of
elongated domains, on a log scale as a function bf Efror bars
indicate fluctuation ofA/P due to standard deviatioffluctuation

1 of perimeter. The dashed line represents circular domains. The dot-
s e ] ted line shows a fit through the data equal to 0.33&xd").
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shapes. One obvious difference, however, exists between the
simulation and the direct calculation results: the predicted
L number of branches. While calculation predicts only bilobed
010 015 020 025 030 035 040 and circular domains, the simulation finds that domains be-
T come increasingly branched &sincreases. The reason for
this will be explained as further simulation results are cov-

. . ) ) ered.
FIG. 3. Domain perimeter as a fu.nCt'on bf Each d.at.a point The simulation results shown in Fig. 3 agree not only with
(©) represents the mean domain perimeter for an individual simu-

: o e . . our prior work, they follow a basic trend which has been
lation. Error bars indicate standard deviati@imctuation of perim- .
eter. All simulations were run a®=0.01 with A=1007 and observed repeatedly from the very start of domain shape cal-

N=100. Solid lines represents the perimeter of domain shapes CaEU|at|0nS[12,20,3z. The characteristic length scale at which

culated 18] to minimize the energy functional ER.1). The dotted circular domains give way to more elongated shapes scales

line represents the perimeter of a circular domain. Inset figure§XPonentially with the ratio of line tension to dipole strength
show sample simulation steps. (i.e., exgl/l)). We have chosen to show the transition from

circular to elongated domains as a functionlofor a fixed
tions in the number of branches grows with Finally, it is  domain area rather than the transition as a function of area
important to note that very little scatter is seen in the perimfor a fixedI'. In this context, the appropriate length scale to
eter data, while the scatter in the number of branches is quitexamine is the width of the domaifer domain branches
large—much larger than the fluctuations. This will be dis-Figure 4 clearly shows that once the domain is no longer
cussed further as more results are presented. circular, its width(as approximated by the ratio of area to

Figure 3 also demonstrates that the simulation agreegerimetey scales exponentially with I/

quite well with the direct calculation of energy minimizing  The second parameter examineddisthe dimensionless
shapeg18]. They agree on the value df for which the temperature; in particular, its effect on the transition from
transition from circular to elongate@.e., large perimetgr compact to elongated domains. Figure 5 plots domain
domains occurs; the calculation predicts a transiioof  shape—perimeter and number of branches—as a function of
0.214. Although the direct calculation plot had to be trun-T" for various®. From the perimeter plot, it is immediately
cated atl'=0.221 because of nonconvergence, both perimapparent that the onset of domain elongation occurs at in-
eter plots appear to follow the same curve above the elongareasingly smallel with increasing temperature. Moreover,
tion transition. The direct calculation predicted that thewhile a clear transition from compact to elongated domains
transition from circular to elongated domains is discontinu-can be seen in the neighborhoodlo#0.21 for ®<0.1, the
ous, i.e., first order. Although too few simulation data pointselongation for®>1 is too gradual to identify a value or
are shown to determine if the transition is discontinuous orange ofI” with this transition. Interestingly, fluctuations in
continuous, the large fluctuatigin perimetey for the simu-  domain perimeter do not appear to necessarily increase with
lation atI'=0.225 strongly suggests that the domain may baemperature; the largest fluctuations occur for IBwear the
oscillating between two, or more, distinct energy minimizingtransition. Finally, the number of branches appears to be de-
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FIG. 5. Effect of temperature on domain shape. Mean perimeter

and mean number of branches are plottedde+0.01 (O), ®=0.1

(), 0=1(0), =2 (A), and®=5 (O). All simulations were run
with N=100. Error bars indicate standard deviatidfisictuation

about meah

termined primarily by temperature for sméalland primarily
by I for largeI'. The fluctuation in the number of branches

increases with temperature and appears to be relatively un-

affected byl

To help demonstrate the effects that temperature has on

the number of branchd83], Fig. 6 shows sequences from

four of the simulations represented in Fig. 5. Domains at

high ©® are rougher than those at lo@; they exhibit many
more outcroppings, or jags. In addition, domains at High
exhibit more branches than those at IbwThe skeletoniza-

0=0.1 ' i '

0=10

r=0.1

0.4

=10

FIG. 6. Sample sequences from four simulations. The top two
sequences are from simulations rud'at0.1; the bottom sequences
two atI'=0.4. The first and third sequences are from simulations
run at®=0.1; the second and third &=1. The first image in each
sequence is the shape used to seed the simulation; the remaining
four from steps evenly spaced through the course of the simulation.

Figure 7 shows the effect that temperature has on the
exponential scaling of domain width. It would appear that
this well established scaling applies fully, as with the discon-
tinuous transition, only at the zero temperature limit. As the
temperature increases, elongation begins at [dwand thus
the domain width begins decreasing sooner, and does so in a
nonexponential manner. The data shown in the figure do,
however, suggest that the domain width will asymptotically
approach the exponential decay as it moves deeper into the
elongation regior{largerT’).

The final parameter examined.i§ the dimensionless do-
main area. As domain size increases, the elongation transi-

tion procedure used to compute number of branches counts
both the true branches—the major topographic features—and
any substantial outcroppings. Thus, for IdWy when the

number of outcroppings greatly exceeds the number of true

100~ 7 T T T T T T
8- - - --—g--———---————~-
Y Koz .
£ x 3 %
g s I
L b4
& s * 32
< 3 3
_— g .y %‘
§ 2 g'g
10 . ]
<o -
2
=
i | | P P 1.
7.00 6.00 5.00 4.00 3.00 2.00

branches, the reported number of branches reflects a strong g 7. Effect of temperature on the exponential growth of do-
dependence o6 For high', as the number of true branches yin width with reciprocal™. Figure 5 is replotted as mean ratio of
increases, the reported number of branches becomes MQigmain area to perimeter on a log scale as a function Bffdy
strongly influenced by'. For both low and high, the num-  @=0.01 (0), ©=0.1 (), ®=1 (0), ®=2 (A), and =5 (®).

ber of true branches remains fairly static throughout anyerror bars indicate fluctuation oA/P due to standard deviation
simulation while the outcroppings are highly dynamic. The(fluctuation of perimeter. The dashed line represents circular do-
fluctuation in the reported number of branches therefore ignains. The dotted line shows a fit through the data equal to

influenced primarily by®. 0.33 ex1.0l").
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domain shape are interpreted. The first is that care should be

130 P taken before treating the simulation results as thermody-
140 ] namic properties. The second implication is that it should be
__130F ] possible to design simulation experiments which mimic cer-
§ 120 i S 2 ] tain aspects of physical experiments. The two simulation ex-
g adl E e: i ] periments which follow take advantage of the latter implica-
210 ¢ E E E g tion to investigate shape hysteresis and the influence of
& o0l ©Z ] elongation rate.
Z - 1 One of the key results found in the direct calculation of
= 2or ] domain shape is that the transition from circular to bilobed
g sof . domains is discontinuous. The shape should therefore exhibit
3:/ 70'_ ] hysteresis when the value bfis cycled through the transi-
Tt z % ¥ F ] tion. To simulate this behavior, a string of linked simulations
6.0 * ; 7 is performed. The first simulation is seeded with a random
50 I S SR shape and run with['=0.2. Subsequent simulations are
100 1000 10000 seeded with the final shape of the preceding simulation and
R run with a value ofl” 0.0025 greater than in the preceding.

Once the value of reaches 0.25, the process is reversed and
FIG. 8. Effect of domain area on the width of domain branchesl 1S decreased between each simulation in steps of 0.0025

Mean ratio of domain area to perimeter, which is approximatelyUntil itis again 0.2. Figures 9, 10, and 11 show the results for
equal to half the width of the branches of elongated domains, i$hese simulations fo®=0.01,©=0.1, and®=1.0, respec-
plotted as a function of equivalent domain radiys4{ ). Results ~ tively. At very low temperature(®=0.01), hysteresis is
are shown for simulations run at two valuesIgf0.3 (circles and  clearly observed in both perimeter and number of segments,
0.4 (diamonds, and at two values 08, 0.1 (open pointsand 1~ Which, except for near the ends of the loop, is either clearly
(filled points. All simulations are run witiN=100. 0 (roughly circular domainsor 1 (single branched domains

At low temperature(®=0.1), hysteresis is still observable,

tion shifts to increasingly loweF. This completely agrees but signs of its d|S|.ntegrat|on are showing. The width is nar-
rower and more importantly, the number of branches is

with what has been found in numerous other studies Whicghowin mixtures of compact and elongated doméatues
examined the effect of domain size on shfp,12,14,18 9 P 9

i g o e between 0 and)1 At high temperatur¢®=1.0), no sign of
Aside from the shift in the transition to lowéf, itis difficult e resis remains. This is, of course, consistent with the
to extract any useful information about how the domain arédinding that the well defined transition disappears with in-

affects domain shape from plots of shape veiSusis more  ¢reasing®. The number of branches, however, remains
interesting, however, to examine how the character of dogghly constant with a value of 1.5, which can be seen from
main branches is affected by domain size. Figure 8 plots thegijg 5 to be the number of branches for a simulation with a
ratio of the domain area to the perimeter as a function ofgndom seed run dt=0.2 and®=1.0.

domain size for two values df and two values o). Both Comparison of the hysteresis results with Fig. 3 reveals an
values ofl" (0.3 and 0.4 are chosen well above the elonga- interesting discrepancy. In the low temperature hysteresis ex-
tion transition for allA shown. The ratio of area to perimeter periments, domains above the elongation transition exhibit
can therefore be interpreted as a measure of the width of thenly single branches; the number of branches shows no sign
branches. The width of the domain branches is clearly indeef increasing with increasing. The core difference between
pendentor only weakly dependentipon domain size; itisa the simulations run for Fig. 3 and the simulations run to
function only of I' and ®. Larger domains must therefore examine hysteresis is in how they are seeded. In the hyster-
exhibit either longer branches or more brancles some €sis experiment, the domains are stepped slowly through the

combination theredfthan smaller domains at the safiand  €longation transition. In the generation of Fig. 3, the domains
0. are essentially plunged through the elongation transition in

one quick step; because the seed shape is compact, it can be
associated with low'. The rate of elongation apparently has
a profound effect on domain shape. In a physical experiment,
As suggested by the sequences shown in Fig. 6, and agongation can be induced either by adjustihgr by chang-
clearly visible when viewing animated sequences froming domain size, which shifts the transitidh The rate of
sample simulationg33], the number and configuration of the elongation is controlled therefore by how fdstis changed
true branches remain fairly static throughout a simulationor, more applicably, by how rapidly domains grow.
once they have been established. These aspects of domainThe final simulation experiment examines the effect that
shape are therefore highly dependent upon the iniial the rate of elongation has on domain shape by stringing to-
seed shape. This, presumably, is the source of the notablgether simulation sets as in the hysteresis experiment. The
scatter in the number of branches plotted in Fig. 3. Becausfirst simulation in each set uses a random seed and is run
of this dependence on the initial formation of branches, eaclith I'=0.2, well below the elongation transition. The last
simulation samples only a small subset of the large set o$imulation in each set is run with=0.4, well above the
energetically accessible domain shapes. This has two immelongation transition. Within each set, the final shape of each
diate implications on how the results from simulations ofsimulation is used as the seed for the subsequent simulation

B. Experiments 4-5: Variation of simulation procedure
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FIG. 9. Shape hysteresis near the elongation transition. Mean FIG. 10. Onset of loss of hysteresis near the elongation transi-
perimeter and number of branches are plotted for simulation setgon. Data is plotted exactly as for Fig. 9, except that simulations
run betweerd"=0.2 andl’=0.4. Each simulation in the séwith the were run at®=0.1.
exception of the firgtwas seeded with the final step of the previous
simulation. Data points representing increadingre shown as open
circles; data points for decreasihgas filled circles. Five increasing
sequences and five decreasing sequences are shown; points within
the same sequence are connected with tie lines. The dashed lines atThe direct calculation predicts bilobed domains. The
P=628.3 represents the minimum possible perimeter, i.e., a circulagsimulation predicts either single or multiple branched do-
domain. All simulations were run & =0.01 with N=100. mains depending upon the rate of elongation. Table | lists the

mean value of the Hamiltonian from various simulations

which predict a different number of branches, in particular,

o , those shown fof'=0.4 in Figs. 12—14. Clearly domains with

and the value of" is incremented byAI" between simula-  te\ver pranches represent a lower energy level than those
tions. SmallAl" corresponds to a slow progression throughyyith many branches, but only marginally. Single branched
the transition. LargeAI" corresponds to a rapid progression gomains remain the most energetically favored shape, but the
through the transition. Figure 12 shows the result€¥e10.1  grjving force for a domain with multiple branches to become
using AT with values of 0.2, 0.1, 0.04, and 0.02. Figure 133 single branch is negligibly weak. Similarly, for a single
shows the same fa®=1.0. To demonstrate the effect visu- pranch domain, the energy difference between a straight
ally, Fig. 14 shows one representative domain shape frorbranch(or bilobe and one which meanders is too small to
each simulation a®=1.0. At both high and low tempera- detect. Both of these results are consistent with the direct
ture, the number of branches clearly decreases with decreasalculation results, which predict that bilobed domains mini-
ing AT". For AT'=0.02, nearly a magnitude larger than in the mize an energy functional which is effectively flat in the
hysteresis experiment, domains exhibit only a single brancheighborhood of this minimum.
well into the elongation regime. This is especially interesting The utility of any theoretical calculation or any simulation
for ®=1.0 since the domain shows a larger number ofis in how it models the physical system. Figure 15 depicts an
branches below the elongation transition. With increa$ing experimentally obtained fluorescence microscopy image of
one of the branches ultimately dominates and the domaione phospholipid monolay¢B8]. Although the domains of
evolves into a single meandering branch. the simulation exist in isolation and those in the microscopy

C. Analysis of experiments +5:
Single vs multiple branched domains
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FIG. 11. Loss of hysteresis near the elongation transition. Data FIG. 12. Sensitivity of domain shape to rate of elongation. Mean

is plotted exactly as for Figs. 9 and 10, except that simulations wererimeter and number of branches are plotted for simulations sets
run at®@=1. run from I'=0.2 to I'=0.4. Each simulation in the séwith the

exception of the firgtwas seeded with the final step of the previous
simulation. The results shown are for sets making stefgsaf 0.2
image have neighbors, the domains shown in the image demo), 0.1 (0), 0.04(¢), and 0.02(A). All simulations were run at
onstrate many of the characteristics predicted by simulation®=0.1 with N=100.
First and foremost, they strongly resemble the shapes found

in the simulations. All of the branches from all of the do- should increase with increasing domain size. Heuristically,
mains appear to be of roughly the same width. The largefarger domains should require larger shape fluctuations to
domains tend to have more branches than smaller domaingduce a transition. Empirically, the definition of dimension-
These domains reside deeper within the elongation regimgess temperature can be rewritten on the basis of domain size
and probably experienced a faster growtius elongation  rather than on the basis of intermolecular distan(es,

rate. Both of these factors are predicted by the simulation t@’=[kT/\R]). The simulation then predicts a low tempera-
increase the observed number of branches. ture limit of ®<0.001 and a high temperature limit of

The domain area used in the simulations reported abovg’~>0.01. For domains observed in the physical systérn,
(100P752) was chosen to allow comparison of the simulationjs on the order of 0.0001, which is clearly now in the low

results to those of prior calculations. For room temperaturgemperature regime.

(300 K), using a value of\ on the order of 10'? N [39],

and a value of5 on the order of 10 Alcorresponding to a IV. CONCLUSIONS

molecular area on the order of 8)Athe value of the di-

mensionless temperature is roughly 4. This is clearly in the Monte Carlo simulation can be a useful complement to
high temperature regime. The domains examined in typicadlirect calculation in the prediction of the shapes of domains
phospholipid systems, however, are much larger than thosabserved in dipolar films. Using the polygon representation
examined in these simulations. Simulation domains have aaf domain shape presented in this paper, these simulations
area on the order of»810 ® um? (radii of 1 nm). Physical can be accomplished without sacrificing either generality or
domains have an area on the order of 2p@6” (radii of 25  computational efficiency. The perimeter metric appears to be
um). It can be argued both heuristically and empirically thata fairly robust measure of domain shape, showing little to no
the boundary between the low and high temperature regimedependence on any of the simulation particulars such as de-
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TABLE I. Comparison of the Hamiltonian for domain shapes
10000 = T T T with a different number of branches. The values shown are from the
simulations shown in Figs. 12—14 wili=0.4. SmallerAl" corre-
& sponds to fewer domain branches.
Ead
Number Average St. dev.
(C] Al of branches  Hamiltonian Hamiltonian
b
& ® 01 020 215 —2651.1 43.7
£ 0.1 0.10 12.0 —2700.3 16.0
'E 0.1 0.04 5.0 —2761.5 10.5
A = 0.1 0.02 11 —2778.4 3.7
1.0 0.20 30.4 —2436.2 345
1000 - | 1.0 0.10 10.5 —2595.6 29.0
s F+1 1.0 0.04 5.7 —2661.5 12.2
1.0 0.02 1.8 —2699.5 8.3
= I I = -
_ ] tatively rather than quantitatively. The qualitative informa-
30 F > tion which it brings, however, provides insight into the visual

nature of domain shape transitions. In addition, this depen-
dence upon the simulation parameters allows for construc-
tion of simulation experiments which mimic aspects of

2 physical experiments.

Simulation can provide information about domain shape
unobtainable by calculation alone. In addition to many minor
results, the simulation experiments reported herein yield four
key results. The width of domain branches is a function of
only I and ® and is independent of the size of the domain.
The transition from compact to elongated domains, already
known to be discontinuous in the zero temperature limit, is
L so only at low temperature; at high temperature, the elonga-
015 020 025 030 035 040 045 tion becomes continuous. Elongated domains may appear ei-

T ther as a single branch or with many branches depending
upon the rate of elongation. While the conformation and
FIG. 13. Sensitivity of domain shape to rate of elongation. DatarOLIghneSS of deVIdu_aI branches may be fairly dy”am'c’ the
is plotted exactly as for Fig. 12, except wi=1. number pf branches is r_easonably static once established.
The simulation experiments presented in this paper repre-

gree of discretization, seed shape, or even elongation ratgent only a fraction of the possibilities. Immediate examples
Nothing indicates that it cannot safely be interpreted as dnclude simulations sgeded Wlth_elongated shapes rather than
thermodynamic property. The number of branches, on th€oMpact ones, experiments which treat area or temperature,

other hand, is highly dependent upon many simulation par[ather thanl’, as the principle simulation parameter, and_a
ticulars. The information it brings should be regarded quali-thorough mapping of parameter space. Other examples might

10 F 7

Number of Branches

AT'=0.2 '
9 3

T
BB RN
T

L (

FIG. 15. Fluorescence microscopy image of an insoluble mono-
layer of a mixture of 50% L-a-dipalmitoyl-2-sn-glycero-
FIG. 14. Sample simulation steps from the simulation setsphosphocholine (DPPQ and 50% 1-behenoyl-2-hydroxy-sn-
shown in Fig. 13. The first image in each sequence is from theylycero-phosphocholine at an air-water interface. Surface pressure
simulation run af"=0.2; the last from the simulation run E&=0.4. is 13 dyne/cm. Area per lipid molecule is 58.6.A>omains exhibit
All simulations were run a®=1 with N=100. shapes similar to those seen in the simulation. Scale:&&Onum.
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include augmentation of the Hamiltonian to examine the ef-
fects of tilted dipoles or anisotropic line tension. Even more
elaborate examples may require adaptation of the simulation
technigue such as to examine interactions between neighbor-
ing domains or the influence of confinement on the domains.
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FIG. 16. Coordinate system used to evaluate Bg). The co-
APPENDIX A ordinates represents distance along domain perimeter. The coordi-
nate{ represents distance from pomat anglew+ ¢, the direction
This appendix details the analytic reduction of the doubleof e,. Also shown herep(s;) represents the val(® of ¢ for
area integral of the Hamiltonian to a double contour integralwhich (s,{) is a point on the perimeter of the domain.
Beginning with the expression for the electrostatic term as
found in Eq.(2.2), the integral oved?’ is expanded using H 27 d?r
polar coordinates with the origin locatedrat 726 2mA fo d(bf jD &) (AB)

H~ o (27 (&0 h(n—1)
/20 Dd 1o 1o P dy dé. (A1) Note that¢ is now the integration variable for the outer
integral and thus essentially a parameter to the inner integral.

Here, the coordinatesy and ¢ represent, respectively, the The inner integration is next expanded using a coordinate
distance fronr and the polar angle. The upper limit of inte- System designed specifically to allow further analytic evalu-
gration overy—the function&(¢;r)—represents the distance ation. The coordinats is defined as the arclength along the
from r to the domain perimeter at angle Although ¢ may perimeter of the domain from an arbitrary fixed point on the
be multivalued for somep, this does not hinder analytic Perimeter. The unit vectoe, is defined to point along the
evaluation. direction 7+ ¢. The coordinate is defined as the distance

The Heaviside function is moved out of the innermostfrom points on the perimeter in the direction ef (see Fig.
integral by adjusting its argument and the lower limit of 16). Applying this coordinate system to EGA6) yields
integration

p 2 d AP fZﬂd j€d| x |fp(s;¢) a¢
T r _— — _
A =f J dzrf h(§(¢;r)—1)j§(¢ )7”d¢. rree “7 0 ¢ § dsiexe, 0 E(r; )
I'/26 D 0 1 Ui (A7)
(A2)
. . . The upper limit of integration overd{—the function
The integral overy is evaluated analytically p(s;p)—represents the distance from pogto the perimeter
H~ , (27 h(&(p;r)—1) in the direction ofe,. As with &(¢;r), p(s;¢) may be multiply
/26 Zf fDd Ffo h(&(¢;r)—1)— TH o) dé. defined for some values afbut will pose no problem.
' (A3) The rationale behind this rather unique coordinate system

can now be utilized. The coordinaté and the function

The identityh(x)=1—h(—x) is applied to the first term of &(r;¢), although defined from opposite viewpoints, are geo-
the integrand metrically identical. Substituting this identity into EGA7)

yields
il —ffdzrfhl h(L— &(4ir))
r26 | Jo Jo = v 5™ He _fzw 3£ J’p(s;¢) d¢
h(&(ir)—1) r6 ~2TAT ], SepAseRalls maxzn:
_ b (A8)
gon 9 e
) ) The integral oved{ is evaluated

which can then be rewritten as,
H# 27 d¢ H* B _sz é '
_ _ 2 ——=27A d xe|V(s;¢)ds, (A9)
reo =27 | |9 ], wam rae 2TAT ], 90 lexaltise

where £ (¢;r)=maxé(;r),1). (A5) where,

Evaluation of the integral ovet’r begins with reversal of 1+Inp(s;¢)  if p(s;¢)>1

the order of integration in EqA5) ¥(s; ¢):[p(s;¢) if p(s;p)<1. (A10)
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Because the definition of? depends on whethep is
v greater than or less than unity, two regimes are defined for
%, the evaluation of Eq(B4). The first regime, which shall be
referred to as regime 1, is defined to contain all coordinate
pairs (u,v) for which p<1. The second regime, which shall
be referred to as regime 2, contains all«) for which p>1.
The boundaries between these two regimes follows easily
from Eq. (B2). In particular, the limits of regime 1 are
v (u)y<v<v*(u), where

AA 0 ’ v (u)=u cosf=* \1—u? sirfe. (B5)

If using>1, thenp will be greater than 1—and thus in re-
FIG. 17. Coordinate axes used to evaluate each integral term igime 2—for allv.
the summation EqB1). Theu axis is defined to be collinear with The integral ; is first evaluated for regime 1. Substituting

the segment; and thev axis collinear witho; . The axes intersect the appropriate definition o¥, i.e., p, into Eq.(B4) yields
at the origin with angles.

) v
Finally, the integration ovedd¢ is converted to contour in- lij 1= —Slnzﬁf Uf 2 dv du, (B6)
tegration((d¢/ds’) =[|e,xel|/p(s,s")])
which immediately evaluates to

A =27A fﬁ% T(ss) X X ey|ds'd
l"/2®_ m p(S,S,) |eS ep||ep eS’| s as. .
(All) Iij,1=—sm20f uln P du
v—Uu cos¥
APPENDIX B —siné cosﬁJ u sin‘l(— du. (B?)

This appendix details the analytic evaluation of the elec-
trostatic integral of the Hamiltonian for polygonal domains. jiere the additional subscript dnindicates that the integra-
For the sake of brevity, however, only evaluation of the in-ijsy was evaluated in regime 1. In the evaluation of the defi-
definite integral will be covered in detail. _ nite integral, the limits on the integration ovés can origi-

Considering the polygon as the set of line segmentsyate from one of two sources: the end pointsopfor the
{01,0,...,04}, the contour integral of Eq2.4) is rewritten as regime boundary. Therefore, before integrating aver Eq.

a summation of line integrals over the edges of the polygonp7) should be evaluated at the regime boundaries; or else
the integration will apply only to constant, or the end-

N N

’kP(S,S’) H . . .

| = xe|le xe,|ds ds. points. Substituting EqBS) into I;; ; produces
izzl 121 foifrrj p(s,s") |e5 P|| P eSl

BD Iij ;= Fsing cosﬁf u cos (u sing)du. (B8)

Each integral term in the summation of E§1) can now be

evaluat_ed u_sin@yet another coordinate tra_nsformation. As Here the superscript indicates tHat, was evaluated at ei-
shown in Fig. 17, twoskew axes are defined so as to be tyer the uppet+) or lower (—) bouhdary of regime 1.

collinear with the line segmenis; and o; and the origin is Finally, Eq.(B7) and Eq.(B8) are integrated ovedu
defined as the intersection of these two axXdmte that the
following analysis does not hold for paralle| ando; , but a w2 sirtd  u?+p2
simple analogous analysis exi$t§hese axes, which shall be lij 1= 2 > sirfé Inp
labeledu andv, intersect at angl®. Within this coordinate
system,p is found easily through law of cosines, v2—u? v —U cosh
+— sinf cosd sin~* ., (B9)
p(u,v)=|ve,—ug,|=Vu?+v?—2uv cosh, (B2)
from which the unit vectoe, is simply, and
ve,—ue, . *ucoshyl—u?sirf
e,=—"". (B3) 1= 2
p
The unit vectorg, ande, are identical tee, ande,’, respec- _2u®sifo—1 cosh cos L(u sing).  (B10)
tively. In this coordinate system the integral terms of Eq. T 4sing '

(B1) can be written as
Repeating the above analysis, the integral is next

; uow evaluated for regime 2. The appropriate i.e., 1+In p, is
i = szaf f PE dv du. (B4) substituted into Eq(B4)
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v(1+Inp) computational efficiency, it is useful to examine indepen-
lij 2= smzaf f — dv du, (B11) dently all regime configurations that a pair of segments can
possibly exhibit. The number of logarithmic and trigonomet-
which evaluates to ric function calls, which tend to be relatively CPU intensive,
can thereby be significantly reduced through combination or
(U—v cos)(2+Inp) elimination of terms.
ij sz du
p APPENDIX C

This appendix details the skeletonization process used to
determine the number of branches in a domain shape. Geo-
metrically, the medial axis, or skeleton, of a planer shape is

+cos9f In(p—u cosf+v)du. (B12)

Evaluation at the regime boundaries yields the locus of points interior to the shape for which the mini-
mum distance to the perimeter has a degeneracy of 2 or

EP — [P S greater[35]. The classic illustration is to imagine a fire lit
lij2=2 steJ u du+2 COS?J 1-usin’gdu simultaneously along the entire perimeter of the shape and

allowed to burn evenly, the fronts of the fire should meet
+Cosgf In(1— 1= uZsirP6)du. (813  along the skeleton of the shap@4]. The number of limbs

(or branchegin such a skeleton provides one measure for
describing the character of domain shape. Because the me-
dial axis cannot, in general, be calculated easily using tradi-
tional analytic geometry, the techniques of digital image pro-
cessing are helpful.

Before the domain shape can be skeletonized, it must be

Integrated ovedu, Eq.(B12) and Eq.(B13) become, respec-
tively,

lij2=p+p Inpt+uln(p—u cosv+v)+v In(p—v cosd

+Uu)—u cod, (B14) converted to a binary pixel image. The shape is mapped onto
a square grid with each element of the giad pixel) set to a
and value of either 1 or 0 depending on whether it represents the
interior or exterior of the shape. For convenience, pixels with
” ,2=U? sif@+u cosh1—u? sirfe yaluc; 1 WiIII be ][efer_recli ;[O aslbeloggri]ng t]? the i_rIT%ge. ?hané;-
. ing the value of a pixel from 1 to 0 therefore will be referre
+u cosf In(1—1—Uu® sin"f) —u cosh. to as removing the pixel from the image. For the results

(B15) reported in this paper, the binary image was always 400 pix-
els by 400 pixels.

Evaluation of the definite integral requires no more than In digital image processing, a skeleton, not necessarily the
determiningd and the limiting values ofi andv for any  medial axis, is generated through an iteration of selective
given g; and o; and evaluating;; at these limits. For seg- erosions[34] of the binary image. Each successive image
ments pairs which reside wholly in a single regime, this is(X;) in the iteration is generated from the precedixg_(;)
completely straightforward. For segment pairs which extenday filtering, or removing, those pixels whose neighborhood
into both regimes, the integral must first be separated intds described by a:33 pixel mask. For skeletonization, a total
components which reside in only one regime. For the sake aff 16 masks are used

1 1 1 1 1] [o 1 0 0
1 0 1 1 0 1 1 0 1 1
o o o] [0 O 0 1 1 1]
o o o] [ o o] [1 0] 1 1 ]
1 1 1 0 1 1 0 1 1 0
1 1 1] |1 1 1 0] 0 0]
] _ ; . (Cy)
1 1 1 0 1 0 0
1 0 1 1 0 1 0 1 1
o 0o o] [o o 0 1] 1
o o o] [ o0 o] [1 0] 1]
1 1 1 0 1 0 1 1 0
1 1] [ 1 |1 0] 0 0]
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The entry in the center of the mask represents the pixel in Once the skeleton imageX{,) has been created, indi-
question and the eight surrounding entries represent the eigiiidual limbs are identified and counted. To identify unique
neighboring pixels. For the mask to fit the neighborhood, allimbs, all triple points ofX;,—pixels which have at least

entries of 1 in the mask must correspond to pixels inside thd'é€ neighboring pixels in the image—are removed from the

image, all entries of 0 in the mask must correspond to pixelémage' The resulting image will consist of some number of

disconnected limbs. To count the number of branches, each

o.utside.the imqge, and aI_I blank er.“”es may correspond .tﬁmb (or branch is recursively removed from the image. Be-
pixels either inside or outside of the image. Only one mask iYinning with the first pixel in the image, it and all pixels

used for each iteration. They are used in the order they aggnnected to it by a continuous path are removed. This pro-
pear in Eq.(C1). After the final mask has been used, thecess of removing limbs is repeated until no pixels remain in
process repeats beginning with the first mask. Iteration conthe image—the number of repetitions is the number of

tinues untilX; is identical toX;_ .

branches.
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